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Abstract

Spatial structure in a color image can be represented using
correlation functions defined withing and between sensor
ba nds. Using a linar model for surface spectral reflectance
wiht the same number of parameters as teh number of
classes of photoreceptors, we show that illumination
changes correspond to linear transformations of a surface
correlation matrix. From this relationship, we derive a dis-
tance function for comparing sets of spatial correlations
functions that can be used for illumination-invariant rec-
ognition. We demonstrate using a large body of experimetns
that this distance function can be used for accurate texture
classification in the presence of large changes in illumina-
tion spectral distribution.

Modeling Color Texture

We model multiband texture using a set of spatial correla-
tion functions that characterize spatial interaction within
and between sensor bands. This model was previously pa-
rametrized by surface location and orientation and used for
geometry-invariant surface recognition.2 In this section the
model is extended by asuming a finite dimensional linear
model for surface spectral reflectance. This extension will
allow the computation of an illumination-invariant distance
function for comparing color textures.

A color imaging system records N measurements at
each location (α,β) given by

    Ii(α ,β ) = λ l(λ )s(α ,β ,λ ) fi(λ )dλ 1 ≤ i ≤ N∫ (1)

where l(λ) is the spectral power distribution of the scene
illumination, s(α,β,λ) is the spectral reflectance of the sur-
face, fi(λ) is the sensitivity of the ith sensor class, and λ
denotes wavelentgth. Following the work of several authors
we represent the spectral reflectance function at each loca-
tion (α,β) using the approximation

  s(α ,β ,λ ) =
1≤ j≤N
∑ σj(α ,β )Sj(λ ) (2)

where the Sj(λ) are a set of fixed basis functions.
As in [2], define a set of correlation functions within

and between sensor bands by

Rij (n,m)
1≤i , j≤N

= E[( Ii (α ,β ) − Ii ) ( I j (α + n, β + m) − I j )] (3)

where Ii and Ij are the repective spatial means and E de-
notes the expected value. Define a symmetric matrix of
correlation functions for the case N = 3 by
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= AΦ(n,m)AT

(4)

where A is a matrix that depends on teh illumination but
not on the surface and Φ(n,m) is a matrix that depends on
surface properties but is independent of illumination (1).
Similar relationships hold for N > 3 with the correspond-
ing increase in the dimenion of the matrices. If R(n,m) is
the matrix of correlation functions ofr the surface corre-
sponding to an illumination l(λ) and R is the matrix of cor-
relation functions for the same surface corresponding to an
illumination l, then

R(n,m) = MR̃(n,m)M T (5)

where M = A Ã−1.
Let each correlation function Rij be represented over a

fintie set of P values of the coordinates (n,m) so that the
resulting values of Rij(n,m) can be stored in a P dimensional
colomn vector. We arrange these column vectors into a P ×
6 correlation matrix C. Let C be the correlation matrix for
a surface under illumination l(λ) and let C be the corre-
sponding matrix for the same surfafce under illumination
l̃ (λ ).  Then from (5), we have

C = C̃L (6)

where L is a 6 × 6 matrix. Therefore, for a change in illu-
mination the correlaiton matrices are related by a linear
transformation.

Illumination-Invariant Texture Recognition

Represent a color texture under an illumination l(λ) by a P
× 6 correlation matrix C as in (6). We will characterize C
by an orthonormal basis obrained by computing the singu-
lar value decomposition (SVD) given by C = U∑VT where
the columns of the P × 6 matrix U = [u1, u2, . . . ,u6] are or-
thonormal eigenvectors of CCT, ∑ is a 6 × 6 diagonal matrix
of singular values σ1, σ2, . . . ,σ6, and the columns of the 6 × 6
matrix V = [ν1,ν2, . . .,ν6] are orthonormal eigenvectors of CTC.
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Consider another Px6 correlation matrix C’= [c′1,c′2...,c′6].
We can determine if C’ is related to C by a linear transforma-
tion as in (6) by considering how well the columns of C’
can be represented using the basis vectors (u1,u2,...,u6)
corresponding to C. The best approximation to the col-
umns of C’ using the basis (u1,u2,...,u6) in the sense of
minimizing the square error is given by the projection
kij=uj

Tci’. We define

  

D = ci ' −((u1
Tci

1≤i≤6
∑ ' )u1 + (u2

Tci ' )u2 +K+(u6
Tci ' )u6 ) 2

 (7)

which is a measure of the distance of the vectors
c′1,c′2,..,c′6 of C’ from the space spanned by the basis
(u1,u2,...,u6). Given a color texture represented by a
correlation matrix C=UΣVT, other color textures repre-
sented by matrices C’ that are related to C by an illumi-
nation change will give small values of the distance D.

Experimental Results

A database was constructed by acquiring color images of
20 textures under nearly white illumination. A set of 60
test images for classification was obtained by imaging
each of the database textures under yellow, red, and
green illumination. The textures were taken from various
sources including sand, trees, carpets, clouds, wallpaper,
patterned cloth, and wrapping paper. Figures 2-6 show
several of the color textures. In each figure the database
image under white illumination is shown in the upper
left. The test images taken under yellow, red, and green
illumination appear in the upper right, lower right, and
lower left quadrants respectively.

Each of the 60 test images is characterized by an
estimated correlation matrix C’ and compared to each
database texture using the distance function D of (7). Each
test texture is classified as an instance of the database
texture for which it has the smallest D. For comparison, we
also consider the Euclidean distance function D’ between a
Px6 correlation matrix C=[c1,c2,...,c6] and a P×6 correlation
matrix C’=[c’1,c’2,...,c’6]. Observe that D’ is a measure of
the difference between C and C’ but does not attempt to
account for illumination changes.

Using the uncorrected distance function D’, only 33
of the 60 test textures are classified correctly. This
indicates that the illumination changes are significant
enough that a direct comparison of normalized correla-
tion functions is not effective for classification. Using
the distance function D, each of the 60 test textures is
classified correctly. Figure 1 is a plot of the D value
computed between test texture 19 under red illumination
and each of the 20 database textures labeled t1 to t20. Note
the large difference between the distance computed for
the correct match t19 and the distances computed for the
other database textures. This distribution is typical of the
classification experiments.
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